Simpson Strong-Tie says successful seismic tests on tall mass timber building simulating two powerful earthquakes validated strength, resiliency of mass timber as a low-carbon structural building material for tall structures in seismically prone areas

Sample article from our R&D/Patents

PLEASANTON, California , May 12, 2023 (press release) –

Tests conducted by the NHERI TallWood Project aim to establish the seismic resiliency of mass timber construction with simulations of both the 1994 Northridge and 1999 Jiji earthquakes.
Simpson Strong-Tie, the leader in engineered structural connectors and building solutions, announced today the successful completion of a series of seismic tests on the tallest building yet subjected to earthquake simulations. Tests on the 10-story mass timber structure were conducted as part of the Natural Hazards Engineering Research Infrastructure (NHERI) TallWood Project, a research project funded by the National Science Foundation and building industry partners to prove the strength and seismic resiliency of mass timber as a low-carbon structural building material.
Seismic tests simulating both the 1994 magnitude 6.7 Northridge earthquake and the 1999 magnitude 7.7 Jiji earthquake were conducted at the Englekirk Structural Engineering Center at the University of California San Diego (UCSD), home to North America’s largest outdoor shake table and one of the two biggest earthquake simulators in the world, with a capacity of carrying and shaking structures weighing up to 2,000 metric tons across six axes of movement.
In addition to UCSD, a consortium of universities collaborated on the NHERI TallWood project, including the Colorado School of Mines; the University of Nevada, Reno; Colorado State University; the University of Washington; Washington State University; Oregon State University; and Lehigh University. The project also received support from the U.S. Forest Service and the USDA Forest Products Laboratory.
“Mass timber is part of a massive trend in architecture and construction, but the seismic performance of tall buildings made with these new systems is not as well understood as other existing building systems,” says Shiling Pei, principal investigator and associate professor of civil and environmental engineering at Colorado School of Mines.
The 10-story tall building is the tallest full-scale building ever tested on an earthquake simulation shake table, and features a new rocking wall lateral system designed for resilient performance, meaning the building will have minimal damage from design-level earthquakes and be quickly repairable after rare earthquakes.
In 2017, Simpson Strong-Tie collaborated with the project team to test a two-story mass timber building by simulating the Northridge earthquake. In addition to demonstrating that mass timber building systems can be seismically resilient, those tests helped the research team develop the design and analysis methods that were used for the 10-story building. Simpson Strong-Tie also conducts seismic research on earthquake simulators located at the company’s Tyrell Gilb research facility in Stockton, California.
“As a pioneer in the development of stronger, more resilient structural systems, Simpson Strong-Tie is excited to partner with the NHERI project team to advance the research of mass timber performance during seismic events,” says Steve Pryor, Advanced Research Manager at Simpson Strong-Tie. “These powerful earthquake simulations will help us better understand the resiliency of both structural and safety-critical nonstructural components in mass timber construction, and will help to validate mass timber as a building material for tall structures in seismically prone areas.”
During the tests, an array of sensors measured the impact of seismic forces across a variety of building systems. In addition to the rocking wall lateral system, the building features four exterior façade assemblies, a number of interior walls, and a 10-story stair tower.
The full findings of the construction and testing of the building will be published later this year, and are expected to support continued adoption of mass timber as a strong and versatile building material for residential and commercial structures in areas prone to seismic activity.
For more information on the NHERI TallWood tests, visit For photography and video of the testing, visit Additional media resources, including video and photography, are available here.
About Simpson Strong-Tie Company Inc.
Simpson Strong-Tie is the world leader in structural solutions — products and technology that help people design and build safer, stronger homes, buildings, and communities. As a pioneer in the building industry, we have an unmatched passion for problem solving through skillful engineering and thoughtful innovation. Our structural systems research and rigorous testing enable us to design code-listed, value-engineered solutions for a multitude of applications in wood, steel, and concrete structures. Our dedication to pursuing ever-better construction products and technology and to surrounding our customers with exceptional service and support has been core to our mission since 1956. For more information, visit and follow us on Facebook, Twitter, YouTube and LinkedIn.

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

See our dashboard in action - schedule an demo
Jason Irving
Jason Irving
- SVP Enterprise Solutions -

We offer built-to-order r&d/patents coverage for our clients. Contact us for a free consultation.

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.