NCSU, Flinders University researchers develop simple liquid metal coating for textiles which can repair itself, repel bacteria, monitor ECG heart signals; coating maintains conductivity when stretched, could be applied to soft robotics, wearable devices

Sample article from our R&D/Patents

ADELAIDE, Australia , May 9, 2023 (press release) –

Scientists from around the world have developed a simple metallic coating treatment for clothing or wearable textiles which can repair itself, repel dangerous bacteria from the wearer and even monitor a person’s electrocardiogram (ECG) heart signals.   

Researchers from North Carolina State University, Flinders University and South Korea say the conductive circuits created by liquid metal (LM) particles can transform wearable electronics and open doors for further development of human-machine interfaces, including soft robotics and health monitoring systems. 

The ‘breathable’ electronic textiles have special connectivity powers to ‘autonomously heal’ itself even when cut, says the US team led by international expert in the field, Professor Michael Dickey.  

When the coated textiles are pressed with significant force, the particles merge into a conductive path, which enables the creation of circuits that can maintain conductivity when stretched, researchers say.   

“The conductive patterns autonomously heal when cut by forming new conductive paths along the edge of the cut, providing a self-healing feature which makes these textiles useful as circuit interconnects, Joule heaters and flexible electrodes to measure ECG signals,” says Flinders University medical biotechnology researcher Dr Khanh Truong, senior co-author in a new article in Advanced Materials Technologies. 

The technique involves dip-coating fabric into a suspension of LM particles at room temperature.  

“Evenly coated textiles remain electrically insulating due to the native oxide that forms on the LM particles. However, the insulating effect can be removed by compressing the textile to rupture the oxide and thereby allow the particles to percolate.  

“This enables the creation of conductive circuits by compressing the textile with a patterned mold. The electrical conductivity of the circuits increases by coating more particles on the textile.”  

As well the LM-coated textiles offer effective antimicrobial protection against Pseudomonas aeruginosa and Staphylococcus aureus.  

This germ repellent ability not only gives the treated fabric protective qualities but prevents the porous material from becoming contaminated if worn for and extended time, or put in contact with other people.    

The particles of gallium-based liquid metals have low melting point, metallic electrical conductivity, high thermal conductivity, effectively zero vapor pressure, low toxicity and antimicrobial properties.  

LMs have both fluidic and metallic properties so show great promise in applications such as microfluidics, soft composites, sensors, thermal switches and microelectronics.  

One of the advantages of LM is that it can be deposited and patterned at room temperature onto surfaces in unconventional ways that are not possible with solid metals. 

The article,Liquid Metal Coated Textiles with Autonomous Electrical Healing and Antibacterial Properties (2023) by Jiayi Yang, Praneshnandan Nithyanandam, Shreyas Kanetkar, Ki Yoon Kwon, Jinwoo Ma, Sooik Im, Ji-Hyun Oh, Mohammad Shamsi, Mike Wilkins, Michael Daniele Tae-il Kim, Huu Ngoc Nguyen, Vi Khanh Truong and Michael D Dickey has been published in Advanced Materials Technologies DOI: 10.1002/admt.202202183  First published: 02 April 2023 https://doi.org/10.1002/admt.202202183 

Media Contact

Tania Bawden
Flinders University
tania.bawden@flinders.edu.au
Office: +61 8 8201 5768
Cell: +61 434 101 516
 @Flinders
Expert Contact

Dr Vi-Khanh Truong
Flinders University
vikhanh.truong@flinders.edu.au
Office: +61 08 7221 8553
Cell: +61 (0)403 353 043
 @Flinders

To read the original peer-reviewed study at Advanced Materials Technologies, click here (paywall access may apply).

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

See our dashboard in action - schedule an demo
Chelsey Quick
Chelsey Quick
- VP Client Success -

We offer built-to-order r&d/patents coverage for our clients. Contact us for a free consultation.

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.