Dresden Technical University receives second funding approval for developing fiber composites for robotics actuator-sensors; fiber composites are used increasingly in moving components due to high specific stiffness, strengths, possible customizations

Sample article from our Transformation & Innovation

DRESDEN, Germany , November 14, 2022 (press release) –

As a result, the simulation-based development of intelligent material combinations for so-called self-sufficient fibre composites shall be available. Actuators and sensors are already integrated into the structures and no longer placed subsequently, as it is actual the case. In the first funding phase, the important basis for the large two-dimensional deformations in soft, biomimetic structures were developed. The further funding by the DFG is a confirmation of the outstanding results achieved so far. Building on this, the second funding phase will focus on ionic and helical actuator-sensor concepts. Combined with intelligent design and control algorithms, self-sufficient, three-dimensionally deforming material systems will emerge. This will make these systems more robust, complex preforming patterns can be customised at the desired location - reversibly and contact-free.

Fibre composites are used increasingly in moving components due to their high specific stiffness and strengths as well as the possibility of tailoring these properties. By integrating adaptive functions into such materials, the need for subsequent actuator placement is eliminated and the robustness of the system is significantly improved. Actuators and sensors based on textiles, such as those being researched and developed at the ITM, are particularly promising in this respect, as they can be integrated directly into the fibre composites during the manufacturing process.

With their innovative properties, interactive fibre-elastomer composites are predestined for numerous fields of application in mechanical and vehicle engineering, robotics, architecture, orthotics and prosthetics: Examples include systems for precise gripping and transport processes (e.g. in hand prostheses, closures and deformable membranes) and components (e.g. trim tabs for land and water vehicles).

Research Training Group 2430 website: https://tu-dresden.de/ing/forschung/graduiertenkollegs/grk2430?set_language=en

Picture download: https://cloudstore.zih.tu-dresden.de/index.php/s/jZGqkSKQS9D7SBF

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

See our dashboard in action - schedule an demo
Jason Irving
Jason Irving
- SVP Enterprise Solutions -

We offer built-to-order transformation & innovation coverage for our clients. Contact us for a free consultation.

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.