Air pollution can affect the complex communication between conifers; upon attack by bark-feeding weevils, conifers release volatile organic compounds that provide cues to nearby seedlings--a process significantly altered but not eliminated by pollution

Sample article from our R&D/Patents

JOENSUU, Finland , September 13, 2022 (press release) –

Conifers are dominant tree species in boreal forests, but they are susceptible to attack by bark beetles.

A new study from the University of Eastern Finland shows that upon attack by bark-feeding weevils, conifers release substantial quantities of volatile organic compounds that provide important cues to neighbouring seedlings.

It has long been known that when plants are damaged, they release odorous chemicals into the atmosphere. These chemicals represent an important medium through which plants communicate.
 
“Whereas broadleaved plants have been frequently shown to respond to chemical odours, the same observations have not been seen in conifers. Therefore, we decided to look whether conifers undergo a similar response and were amazed at the results,” Doctoral Researcher Hao Yu of the University of Eastern Finland says. 

The study showed that Scots pine seedlings damaged by bark-feeding weevils release vast quantities of volatile chemicals into the atmosphere. Undamaged plants exposed to these chemicals also start to release volatiles and prepare themselves to emit more if they are subsequently attacked by weevils.

Importantly, those receiver plants also increased their stomatal conductance and net photosynthesis rate.

“This observation is novel and has broad implications for further research investigating the mechanisms of how plants obtain information from their neighbours,” says Professor James Blande, leader of an Academy of Finland funded project on conifer communication at the University of Eastern Finland.

In addition, receiver plants had altered resin duct traits, and were subject to reduced amounts of damage by pine weevils.

The team also investigated the responses of receiver plants under elevated ozone conditions, which represents the situation in more polluted regions. They found that the responses were significantly altered, but the final defence outcome was not affected.

“The different responses of receiver plants made us think that the communication process was eliminated, but receiver plants still had more resistance to weevils,” Yu points out.  

This research sheds new light on the dynamism of conifer communication and shows that the process can be substantially altered by air pollution.

For further information, please contact:

Doctoral Researcher Hao Yu, hao.yu@uef.fi, or Prof. James Blande, james.blande@uef.fi

ttps://uefconnect.uef.fi/en/group/conifercom/

Research article:

Yu H, Kivimäenpää M, Blande JD. 2022 Volatile-mediated between-plant communication in Scots pine and the effects of elevated ozone. Proc. R. Soc. B 289: 20220963. https://doi.org/10.1098/rspb.2022.0963

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

See our dashboard in action - schedule an demo
Jason Irving
Jason Irving
- SVP Enterprise Solutions -

We offer built-to-order r&d/patents coverage for our clients. Contact us for a free consultation.

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.