Researchers at Iowa State University find treating biomass including soft wood, switch grass with ultrasound boosts chemical reactions such as lignin removal necessary to covert feedstock into biofuels and biochemicals

Allison Oesterle

Allison Oesterle

CHARLOTTEVILLE, Virginia , May 30, 2013 (press release) – All chefs know that “you have to break some eggs to make an omelet,” and that includes engineers at Iowa State University who are using high-frequency sound waves to break down plant materials in order to cook up a better batch of biofuel. Research by David Grewell, associate professor of agricultural and biosystems engineering, and his colleagues Melissa Montalbo-Lomboy and Priyanka Chand, has shown that “pretreating” a wide variety of feedstocks (including switch grass, corn stover, and soft wood) with ultrasound consistently enhances the chemical reactions necessary to convert the biomass into high-value fuels and chemicals.

The team will present its findings at the 21st International Congress on Acoustics (ICA 2013), held June 2-7 in Montreal.

In one example of ultrasound’s positive impact on biofuel production, the Iowa State researchers found that they could significantly increase the efficiency of removing lignin from biomass in solution. Lignin is the chemical compound that binds cellulose and hemicellulose together in plant cell walls. Commonly, enzymes or chemicals are used to remove it from biomass and allow the freed sugars to be dissolved for further processing into biofuel. Grewell and his colleagues found that pretreating instead with ultrasound makes lignin removal so efficient that sugar dissolution occurs in minutes rather than the hours needed with traditional mixing systems.

Grewell’s team also found that hydrolysis of corn starch could be greatly accelerated using ultrasonics. In a conventional ethanol plant, ground corn is steamed with jet cookers at boiling point temperatures. This breaks down the corn, leaving a starch mash that is then cooled and treated with enzymes in a process known as hydrolysis to release glucose for fermentation. The Iowa State team replaced the initial steaming with ultrasound, sonically smashing the corn into tiny particles in the same way physicians use ultrasound to shatter kidney stones. The smaller corn fragments provided more surface area for enzymatic action, and therefore, resulted in fermentation yields comparable to jet cooking.

The potential cost savings for this method, says Grewell, are very encouraging. “Economic models,” he explains, “have shown that once implemented, this technology could have a payback period of less than one year.”

Grewell and his colleagues report a third application for ultrasound in biofuel production, showing that they can accelerate transesterification, the main chemical reaction for converting oil to biodiesel. In one case, the researchers found that subjecting soybean oil to ultrasound transformed it into biodiesel in less than a minute, rather than the 45 minutes it normally takes. Similarly, Grewell’s team found that yeast populated with sugar and starved with glycerin, a co-product of biodiesel production, could prodfuce high yields of oil that could be extracted and simultaneously converted to biodiesel with ultrasonics in less than a minute. This is a dramatically faster and less complicated method than traditional techniques requiring multiple steps and relatively long cycle times.

Presentation 5aPA3, “Enhancing biofuel production by ultrasonics,” is in the morning session on Friday, June 7. Abstract: http://asa.aip.org/web2/asa/abstracts/search.jun13/asa1501.html

###

MORE INFORMATION ABOUT THE ICA 2013 MONTREAL

USEFUL LINKS:
Main meeting website: http://www.ica2013montreal.org/
Itinerary planner and technical program: http://acousticalsociety.org/meetings/ica-2013/

WORLD WIDE PRESS ROOM
ASA's World Wide Press Room (www.acoustics.org/press) will be updated with additional tips on dozens of newsworthy stories and with lay-language papers, which are 300-1200 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio, and video.

PRESS REGISTRATION
We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact Jason Bardi (jbardi@aip.org, 240-535-4954), who can also help with setting up interviews and obtaining images, sound clips, or background information.

****************************
This news release was prepared for the Acoustical Society of America (ASA) by the American Institute of Physics (AIP).

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), Acoustics Today magazine, ECHOES newsletter, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at http://www.acousticalsociety.org.

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

Share:

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.