Soy protein can significantly reduce fat accumulation, triglycerides in livers of obese patients by partially restoring function of key signaling pathway in organ, research shows

Nevin Barich

Nevin Barich

SAN DIEGO , April 26, 2012 (press release) – University of Illinois researchers will report this week that new research shows how soy protein could significantly reduce fat accumulation and triglycerides in the livers of obese patients by partially restoring the function of a key signaling pathway in the organ.

Hong Chen, an assistant professor of food science and human nutrition at the University of Illinois, will present her team’s findings at 1:05 p.m. Sunday, April 22, at the annual meeting of the American Society for Biochemistry and Molecular Biology, held in conjunction with the Experimental Biology 2012 meeting in San Diego.

“Almost a third of American adults have fatty liver disease, many of them without symptoms,” Chen explained. “Obesity is a key risk factor for this condition, which can lead to liver failure.”
Fat is metabolized in the liver, and in those who are obese the transport of fat to adipose tissue can slow down to the point at which the liver becomes a dumping ground for excess fat, she said. “When fat accumulates in an organ that’s not supposed to store fat — like the liver, that organ’s vital function can be dangerously compromised,” she noted.

Eating soy protein, from such sources as tofu and yogurt, appears to alleviate some of the stress on fatty livers, Chen said. For her study, Chen compared fat accumulation in the livers of lean and obese rats, which were assigned to either a diet containing casein, a milk-based protein, or a diet containing soy protein, for 17 weeks after weaning.

While diet had no effect on the liver profiles of lean animals, the obese rats that were fed soy showed a 20 percent reduction in triglycerides and overall fat accumulation in the liver, leading Chen to believe that soy protein could be used to alleviate the symptoms of fatty liver disease.

Furthermore, the scientists discovered that soy protein isolate partially restored the Wnt/β- catenin signaling pathway, a crucial player in fat metabolism. “In many obese persons, there’s a sort of traffic problem, and when more fat can make its way out of the liver, there is less pressure on that organ,” Chen said.

About Experimental Biology 2012

Experimental Biology is an annual gathering of six scientific societies that this year is expected to draw 14,000-plus independent scientists and exhibitors. The American Association of Anatomists (AAA) is a co-sponsor of the meeting, along with the American Physiological Society (APS), American Society for Biochemistry and Molecular Biology (ASBMB), American Society for Investigative Pathology (ASIP), American Society for Nutrition (ASN) and the American Society for Pharmacology and Experimental Therapeutics (ASPET).

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

Share:

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.