Red meat consumption associated with increased risk of total, cardiovascular and cancer mortality, study says; healthy proteins like fish, poultry associated with lower risk of mortality

Nevin Barich

Nevin Barich

CHICAGO , March 13, 2012 (press release) – ABSTRACT

Background Red meat consumption has been associated with an increased risk of chronic diseases. However, its relationship with mortality remains uncertain.

Methods We prospectively observed 37 698 men from the Health Professionals Follow-up Study (1986-2008) and 83 644 women from the Nurses' Health Study (1980-2008) who were free of cardiovascular disease (CVD) and cancer at baseline. Diet was assessed by validated food frequency questionnaires and updated every 4 years.

Results We documented 23 926 deaths (including 5910 CVD and 9464 cancer deaths) during 2.96 million person-years of follow-up. After multivariate adjustment for major lifestyle and dietary risk factors, the pooled hazard ratio (HR) (95% CI) of total mortality for a 1-serving-per-day increase was 1.13 (1.07-1.20) for unprocessed red meat and 1.20 (1.15-1.24) for processed red meat. The corresponding HRs (95% CIs) were 1.18 (1.13-1.23) and 1.21 (1.13-1.31) for CVD mortality and 1.10 (1.06-1.14) and 1.16 (1.09-1.23) for cancer mortality. We estimated that substitutions of 1 serving per day of other foods (including fish, poultry, nuts, legumes, low-fat dairy, and whole grains) for 1 serving per day of red meat were associated with a 7% to 19% lower mortality risk. We also estimated that 9.3% of deaths in men and 7.6% in women in these cohorts could be prevented at the end of follow-up if all the individuals consumed fewer than 0.5 servings per day (approximately 42 g/d) of red meat.

Conclusions Red meat consumption is associated with an increased risk of total, CVD, and cancer mortality. Substitution of other healthy protein sources for red meat is associated with a lower mortality risk.

INTRODUCTION

Meat is a major source of protein and fat in most diets. Substantial evidence from epidemiological studies shows that consumption of meat, particularly red meat, is associated with increased risks of diabetes,1 cardiovascular disease (CVD),2 and certain cancers.3 Several studies also suggest an elevated risk of mortality associated with red meat intake. However, most of these studies have been performed in populations with a particularly high proportion of vegetarians (such as Seventh-Day Adventists in the United States4 and several studies in Europe5). A recent large cohort study6 with 10 years of follow-up found that a higher intake of total red meat and total processed meat was associated with an increased risk of mortality. However, this study did not differentiate unprocessed from processed red meat, and diet and other covariates were assessed at baseline only. Furthermore, to our knowledge, no study has examined whether substitution of other dietary components for red meat is associated with a reduced mortality risk.

Therefore, we investigated the association between red meat intake and cause-specific and total mortality in 2 large cohorts with repeated measures of diet and up to 28 years of follow-up: the Health Professionals Follow-up Study (HPFS) and the Nurses' Health Study (NHS). We also estimated the associations of substituting other healthy protein sources for red meat with total and cause-specific mortality.


METHODS

STUDY POPULATION

We analyzed data from 2 prospective cohort studies: the HPFS (initiated in 1986, n = 51 529 men aged 40-75 years) and the NHS (started in 1976, n = 121 700 women aged 30-55 years). Detailed descriptions of the cohorts are provided elsewhere.7-8 Questionnaires were administered biennially to collect and update medical, lifestyle, and other health-related information, and the follow-up rates exceeded 90% in each 2-year cycle for both cohorts.

In the present analysis, we used 1986 for the HPFS and 1980 for the NHS as baseline, when we assessed diet using a validated food frequency questionnaire (FFQ); 49 934 men and 92 468 women returned the baseline FFQ. We excluded 5617 men and 5613 women who had a history of CVD or cancer at baseline and 6619 men and 3211 women who left more than 9 blank responses on the baseline FFQ, had missing information about meat intake, or reported implausible energy intake levels (<500 or >3500 kcal/d). After the exclusions, data from 37 698 men and 83 644 women were available for the analysis. The excluded participants and those who remained in the study were similar with respect to red meat intake and obesity status at baseline. The study protocol was approved by the institutional review boards of Brigham and Women's Hospital and Harvard School of Public Health.

ASSESSMENT OF MEAT CONSUMPTION

In 1980, a 61-item FFQ was administered to the NHS participants to collect information about their usual intake of foods and beverages in the previous year. In 1984, 1986, 1990, 1994, 1998, 2002, and 2006, similar but expanded FFQs with 131 to 166 items were sent to these participants to update their diet. Using the expanded FFQ used in the NHS, dietary data were collected in 1986, 1990, 1994, 1998, 2002, and 2006 from the HPFS participants. In each FFQ, we asked the participants how often, on average, they consumed each food of a standard portion size. There were 9 possible responses, ranging from "never or less than once per month" to "6 or more times per day." Questionnaire items about unprocessed red meat consumption included "beef, pork, or lamb as main dish" (pork was queried separately beginning in 1990), "hamburger," and "beef, pork, or lamb as a sandwich or mixed dish." The standard serving size was 85 g (3 oz) for unprocessed red meat. Processed red meat included "bacon" (2 slices, 13 g), "hot dogs" (one, 45 g), and "sausage, salami, bologna, and other processed red meats" (1 piece, 28 g). The reproducibility and validity of these FFQs have been described in detail elsewhere.9-10 The corrected correlation coefficients between the FFQ and multiple dietary records were 0.59 for unprocessed red meat and 0.52 for processed red meat in the HPFS,9 and similar correlations were found in the NHS.10

ASCERTAINMENT OF DEATH

The ascertainment of death has been documented in previous studies.11 Briefly, deaths were identified by reports from next of kin, via postal authorities, or by searching the National Death Index, and at least 95% of deaths were identified.11 The cause of death was determined after review by physicians and were primarily based on medical records and death certificates. We used the International Classification of Diseases, Eighth Revision, which was widely used at the start of the cohorts, to distinguish deaths due to cancer (codes 140-207) and CVDs (codes 390-459 and 795).

ASSESSMENT OF COVARIATES

In the biennial follow-up questionnaires, we inquired and updated information on medical, lifestyle, and other health-related factors, such as body weight; cigarette smoking status; physical activity level; medication or supplement use; family history of diabetes mellitus, myocardial infarction, and cancer; and history of diabetes mellitus, hypertension, and hypercholesterolemia. In NHS participants, we also ascertained menopausal status and postmenopausal hormone use.

STATISTICAL ANALYSIS

We used time-dependent Cox proportional hazards regression models to assess the association of red meat consumption with cause-specific and total mortality risks during follow-up. We conducted analyses separately for each cohort. In multivariate analysis, we simultaneously controlled for intakes of total energy, whole grains, fruits, and vegetables (all in quintiles) and for other potential nondietary confounding variables with updated information at each 2- or 4-year questionnaire cycle. These variables included age; body mass index (calculated as weight in kilograms divided by height in meters squared) (<23.0, 23.0-24.9, 25.0-29.9, 30.0-34.9, or ≥35.0); race (white or nonwhite); smoking status (never, past, or current [1-14, 15-24, or ≥25 cigarettes per day]); alcohol intake (0, 0.1-4.9, 5.0-14.9, or ≥15.0 g/d in women; 0, 0.1-4.9, 5.0-29.9, or ≥30.0 g/d in men); physical activity level (<3.0, 3.0-8.9, 9.0-17.9, 18.0-26.9, or ≥27.0 hours of metabolic equivalent tasks per week); multivitamin use (yes or no); aspirin use (yes or no); family history of diabetes mellitus, myocardial infarction, or cancer; and baseline history of diabetes mellitus, hypertension, or hypercholesterolemia. In women, we also adjusted for postmenopausal status and menopausal hormone use.

To better represent long-term diet and to minimize within-person variation, we created cumulative averages of food intake from baseline to death from the repeated FFQs.12 We replaced missing values in each follow-up FFQ with the cumulative averages before the missing values. We stopped updating the dietary variables when the participants reported a diagnosis of diabetes mellitus, stroke, coronary heart disease, angina, or cancer because these conditions might lead to changes in diet.

We conducted several sensitivity analyses to test the robustness of the results: (1) we further adjusted for intakes of other major dietary variables (fish, poultry, nuts, legumes, and dairy products, all in quintiles) or several nutrients or dietary components (glycemic load, cereal fiber, magnesium, and polyunsaturated and trans fatty acids, all in quintiles) instead of foods; (2) we corrected for measurement error13 in the assessment of red meat intake by using a regression calibration approach using data from validation studies conducted in the HPFS9 in 1986 and in the NHS10 in 1980 and 1986; (3) we repeated the analysis by using simply updated dietary methods (using the most recent dietary variables to predict mortality risk in the next 4 years)12 or continue to update a participant's diet even after he or she reported a diagnosis of major chronic disease or using only baseline dietary variables; and (4) we used the energy density of red meat intake (serving/1000 kcalx d–1) as the exposure instead of the crude intake. In addition, we used restricted cubic spline regressions with 4 knots to examine a dose-response relation between red meat intake and risk of total mortality.

We estimated the associations of substituting 1 serving of an alternative food for red meat with mortality by including both as continuous variables in the same multivariate model, which also contained nondietary covariates and total energy intake. The difference in their β coefficients and in their own variances and covariance were used to estimate the hazard ratios (HRs) and 95% CIs for the substitution associations.14 We calculated population-attributable risk (95% CI) to estimate the proportion of deaths in the 2 cohorts that would be prevented at the end of follow-up if all the participants were in the low-intake group.15 For these analyses, we compared participants in the low–red meat intake category (<0.5 servings daily, or 42 g/d) with the remaining participants in the cohorts.

The HRs from the final multivariate-adjusted models in each cohort were pooled to obtain a summary risk estimate with the use of an inverse variance–weighted meta-analysis by the random-effects model, which allowed for between-study heterogeneity. Data were analyzed using a commercially available software program (SAS, version 9.2; SAS Institute, Inc), and statistical significance was set at a 2-tailed α = .05.

RESULTS

In the HPFS, with up to 22 years of follow-up (758 524 person-years), we documented 8926 deaths, of which 2716 were CVD deaths and 3073 were cancer deaths. In the NHS, with up to 28 years of follow-up (2 199 892 person-years), we documented 15 000 deaths, of which 3194 were CVD deaths and 6391 were cancer deaths. For both cohorts combined, we documented 23 926 deaths (including 5910 CVD deaths and 9464 cancer deaths) during 2.96 million person-years of follow-up. Men and women with higher intake of red meat were less likely to be physically active and were more likely to be current smokers, to drink alcohol, and to have a higher body mass index (Table 1). In addition, a higher red meat intake was associated with a higher intake of total energy but lower intakes of whole grains, fruits, and vegetables. Unprocessed and processed red meat consumption was moderately correlated (r = 0.40 in the HPFS and 0.37 in the NHS). However, red meat consumption was less correlated with intakes of poultry and fish (Spearman correlation coefficients, r = –0.04 and –0.18 in the HPFS and r = 0.05 and –0.12 in the NHS, respectively). During follow-up, red meat intake declined in men and women (eFigure). For example, the mean daily intake of unprocessed red meat dropped from 0.75 to 0.63 servings from 1986 to 2006 in men and from 1.10 to 0.55 servings from 1980 to 2006 in women.

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

Share:

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.