Scientists create wood-based foam for cooling buildings, saving energy; lightweight nanocrystal foam reflects 96% of visible light, emits 92% of absorbed infrared radiation away from building, reduces temperature by 16°F, reduces energy use by 35.4%

Sample article from our Bioeconomy

NANJING, China & GOTTINGEN, Germany , September 19, 2022 (press release) –

Summertime is almost here, a time when many people try to beat the heat. But running air conditioners constantly can be expensive and wasteful. Now, researchers reporting in ACS’ Nano Letters have designed a lightweight foam made from wood-based cellulose nanocrystals that reflects sunlight, emits absorbed heat and is thermally insulating. They suggest that the material could reduce buildings’ cooling energy needs by more than a third.

Although scientists have developed cooling materials, they have disadvantages. Some materials that passively release absorbed heat let a lot of heat through to buildings under the direct, midday sun of the summer months. And other materials that reflect sunlight don’t work well in hot, humid or cloudy weather. So, Yu Fu, Kai Zhang and colleagues wanted to develop a robust material that could reflect sunlight, passively release heat and keep wayward heat from passing through.

To generate a cooling material, the researchers connected cellulose nanocrystals together with a silane bridge, before freezing and freeze-drying the material under a vacuum. This process vertically aligned the nanocrystals, making a white, lightweight foam, which reflected 96% of visible light and emitted 92% of absorbed infrared radiation. When placed over an aluminum foil-lined box sitting outdoors at noon, the material kept the temperature inside the box 16 degrees F cooler than outside of it. Also, the material kept the inside of the box 13 degrees F cooler when the air was humid. As the cellulose-based foam was compressed, its cooling ability decreased, revealing tunable cooling properties. The team calculated that placing the foam on the roof and exterior walls of a building could reduce its cooling energy needs by an average of 35.4%. Because the wood-based cellulose foam’s performance can be tuned depending on weather conditions, the researcher say that the technology could be applied in a wide range of environments.

The authors acknowledge funding from the German Research Foundation (DFG), Lower Saxony Ministry of Science and Culture, the National Natural Science Foundation of China, Jiangsu Specially appointed Professorship Program, Science and Technology Innovation Project for Overseas Students of Nanjing City, the Postgraduate Research & Practice Innovation Program of Jiangsu Province, National First-class Disciplines (PNFD), the Jiangsu Government Scholarship for Overseas Studies and the China Scholarship Council.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

“Dynamically Tunable All-Weather Daytime Cellulose Aerogel Radiative Supercooler for Energy-Saving Building” 
Nano Letters

Editor's note: To access the original research paper at ACS Nano Letters, click here.

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

See our dashboard in action - schedule an demo
Dan Rivard
Dan Rivard
- VP Market Development -

We offer built-to-order bioeconomy coverage for our clients. Contact us for a free consultation.

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.