Scientists convert CO2 into fumarate, a key component of biodegradable plastics such as polybutylene succinate; process uses malate dehydrogenase as a biocatalyst to produce fumarate from CO2, biomass-derived pyruvate: Osaka Metropolitan University

Sample article from our Bioeconomy

OSAKA, Japan , September 19, 2022 (press release) –

Technology sequesters CO2 emissions

In plants, natural photosynthesis binds carbon dioxide (CO2­) to organic compounds, which can then be converted into glucose or starch. These useful molecules can be sequestered, storing the carbon in a solid form. Artificial photosynthesis mimics this process by reducing the greenhouse gas CO2—the main cause of climate change—which is converted into other useful substances.

Researchers from Osaka Metropolitan University have managed to create fumarate using artificial photosynthesis on pyruvate and CO2. This fumarate can be used to make biodegradable plastic like polybutylene succinate, storing the carbon in a compact, durable, solid form. Currently, most fumarate used to make this plastic is produced from petroleum, so creating fumarate from CO2 and biomass-derived pyruvate is highly desirable.

Professor Yutaka Amao from the Research Center for Artificial Photosynthesis and Mika Takeuchi, a graduate student at the Osaka Metropolitan University Graduate School of Science, used the biocatalyst malate dehydrogenase (oxaloacetate-decarboxylating) to combine CO2 with pyruvate, derived from biomass, to produce L-malic acid. Subsequently, the biocatalyst fumarase was used to dehydrate the L-malic acid to synthesize fumarate.

“The biocatalysts were used to convert CO2 into a raw material for plastic. Based on our results, we will continue to construct better CO2 conversion systems with an even lower environmental impact; we are aiming for more efficient conversion of CO2 into useful substances, using light energy,” said Prof Amao.

With this success, the team has already begun researching new methods of artificial photosynthesis with the goal of producing fumarate using light as energy. If this technology can be realized, it will create a new artificial photosynthetic system to synthesize useful macromolecules from CO2.

###

About OMU

Osaka Metropolitan University is a new public university established by a merger between Osaka City University and Osaka Prefecture University in April 2022. For more science news, see https://www.upc-osaka.ac.jp/new-univ/en-research/, and follow @OsakaMetUniv_en, or search #OMUScience.

Media Contact

Akane Kunida
Osaka Metropolitan University
koho-ipro@ml.omu.ac.jp

JOURNAL
Reaction Chemistry & Engineering

DOI
10.1039/D2RE00039C 

METHOD OF RESEARCH
Experimental study

SUBJECT OF RESEARCH
Not applicable

ARTICLE TITLE
Biocatalytic fumarate synthesis from pyruvate and CO2 as a feedstock

ARTICLE PUBLICATION DATE
13-Jul-2022

* All content is copyrighted by Industry Intelligence, or the original respective author or source. You may not recirculate, redistrubte or publish the analysis and presentation included in the service without Industry Intelligence's prior written consent. Please review our terms of use.

See our dashboard in action - schedule an demo
Jason Irving
Jason Irving
- SVP Enterprise Solutions -

We offer built-to-order bioeconomy coverage for our clients. Contact us for a free consultation.

About Us

We deliver market news & information relevant to your business.

We monitor all your market drivers.

We aggregate, curate, filter and map your specific needs.

We deliver the right information to the right person at the right time.

Our Contacts

1990 S Bundy Dr. Suite #380,
Los Angeles, CA 90025

+1 (310) 553 0008

About Cookies On This Site

We collect data, including through use of cookies and similar technology ("cookies") that enchance the online experience. By clicking "I agree", you agree to our cookies, agree to bound by our Terms of Use, and acknowledge our Privacy Policy. For more information on our data practices and how to exercise your privacy rights, please see our Privacy Policy.